Arkiv for 'atomklokken' Kategori

Teknologier som stole på Atomic Clocks (Part 2)

Søndag, mars 21st, 2010

GPS er ikke den eneste teknologien som er avhengig av atomur. De høye nøyaktighetsnivåene som leveres av atomklokkene brukes i andre viktige teknologier som vi tar for gitt hver dag.

Luft trafikk kontroll Ikke bare er alle fly og flyruter nå utstyrt med GPS for å muliggjøre piloter og bakkepersonell å kjenne sin eksakte plassering, men atomklokker brukes også av flytrafikstyrere som trenger presise og nøyaktige målinger og tid mellom fly.

Trafikklys og veiskonferansesystemer - Trafikklys er et annet system som er avhengig av atomurtidspunktet. Nøyaktighet og synkronisering er viktig for trafikklyssystemer, da små feil i synkronisering kan føre til dødelige ulykker.

Congestion-kameraer og andre systemer som parkeringsmåler bruker også atomur som grunnlag for deres tidsprosess, da dette forhindrer juridiske problemer ved utstedelse av strafferett.

CCTV - Closed-tv er en annen storskala bruker av atomklokker. CCTV-kameraer brukes ofte i kampen mot kriminalitet, men som bevis er de ineffektive i en domstol, med mindre timinginformasjonen på CCTV-kameraet kan bevises å være nøyaktig. Unnlatelse av å gjøre det kan føre til at kriminelle unngår påtalemyndighet fordi på tross av identifiseringen av kameraet, kan bevis på at det var på tidspunktet og datoen for lovbrudd ikke klargjøres uten nøyaktighet og synkronisering.

Internett - Mange av programmene vi nå overlater til internett, er bare gjort mulig takket være atomklokker. Internett-handel, internettbank og selv online auksjonshus trenger alle nøyaktig og synkronisert tid.

Tenk deg å ta besparelsene fra bankkontoen din bare å finne ut at du kan trekke dem tilbake fordi en annen datamaskin har en langsommere klokke eller forestille budgivning på et internett-auksjonssted bare for å få budet avvist av et bud som kom før din, fordi det ble laget på en datamaskin med en langsommere klokke.

Å bruke atomur som kilde til tid er relativt rett frem for mange teknologier. Radiosignaler og til og med GPS-overføringene kan brukes som kilde til atomurtid og for datasystemer, protokollen NTP (Network Time Protocol) vil sikre at alle størrelser i nettverket synkroniseres perfekt sammen. dedikert NTP-servere tid brukes over hele verden i teknologier og applikasjoner som krever presis tid.

Teknologier som stole på Atomic Clocks (Part 1)

Onsdag, mars 17th, 2010

Atomklokkene er de mest nøyaktige timekeeping enheter kjent for mannen. Der nøyaktighet er uforlignelig med andre klokker og kronometre i det mens selv den mest sofistikerte elektroniske klokken vil drive med en sekund hver uke eller to, mest moderne atomklokker kan fortsette å løpe i tusenvis av år og ikke miste selv en brøkdel av et sekund.

Nøyaktigheten av en atomur er nede på det de bruker som grunnlag for tidsmåling. I stedet for å stole på en elektronisk strøm som går gjennom en krystall som en elektronisk klokke, bruker en atomur en hyperfineovergang av et atom i to energistater. Selv om dette kan høres komplisert, er det bare en ufullstendig reverberation som "ticks" over 9 milliarder ganger hvert sekund, hvert sekund.

Men hvorfor slik nøyaktighet virkelig er nødvendig og hvilke teknologier er atomklokker ansatt i?

Det er ved å undersøke teknologiene som benytter atomklokker som vi kan se hvorfor slike høye nøyaktighetsnivåer kreves.

GPS - Satellittnavigasjon

Satellittnavigasjon er en stor industri nå. Når bare en teknologi for militæret og aviatorene, er GPS satellittnavigasjon nå brukt av trafikanter over hele verden. Imidlertid er navigasjonsinformasjonen som leveres av satellittnavigasjonssystemer som GPS, avhengig av nøyaktigheten av atomurene.

GPS fungerer ved å triangulere flere timingsignaler som distribueres fra atomur ombord på GPS-satellittene. Ved å trene når tidssignalet ble utgitt fra satellitten, kan satellittnavigasjonsmottakeren bare hvor langt det er fra satellitten, og ved å bruke flere signaler, beregne hvor det er i verden.

På grunn av disse tidssignalene går det med lysets hastighet, bare ett sekunds unøyaktighet i tidssignalene kan føre til at posisjonsinformasjonen blir tusenvis av miles ut. Det er testament til nøyaktigheten av GPS atomklokker som for øyeblikket er en satellittnavigasjonsmottaker, er nøyaktig innen fem meter.

MSF nedetid på mars 11

Søndag, mars 7th, 2010

De National Physical Laboratory har annonsert planlagt vedlikehold denne uken (torsdag), noe som betyr at MSF60kHz-tiden og frekvenssignalet vil bli midlertidig slått av for at vedlikeholdet skal kunne utføres i sikkerhet på Anthorn-radiostasjonen i Cumbria.

Normalt varer disse planlagte vedlikeholdsperiodene bare noen få timer og bør ikke forårsake noen forstyrrelser for noen som stole på MSF-signalet for tidsapplikasjoner.
NTP (Network Time Protocol) passer godt til disse midlertidige tapene av signal og lite hvis ingen drift skulle oppleves av noen Ntp tid bruker.

Imidlertid er det noen brukere på høyt nivå av nettverksservere eller kan ha bekymringer om nøyaktigheten av teknologien i løpet av disse planlagte perioder uten signal. Det er en annen løsning for å sikre et kontinuerlig, sikkert og like nøyaktig tidssignal blir alltid brukt.

GPS, mest brukt til navigering og wayfinding det faktisk en atomur basert teknologi. Hver av GPS-satellittene sender et signal fra deres innebygde atomur som brukes av satellittnavigasjonsenheter som utarbeider plasseringen gjennom triangulering.

Disse GPS-signalene kan også mottas av a GPS NTP tidsserver. Akkurat som MSF eller andre radiosignal-tidsservere mottar det eksterne signalet fra Anthorn-senderen, kan GPS-tidsserverne motta dette nøyaktige og eksterne signalet fra satellittene.

I motsetning til radiosendingene må GPS aldri gå ned, selv om det noen ganger kan være umulig å motta signalet som en GPS-antenne, trenger et klart syn på himmelen, og derfor bør det helst være på taket.

For de som ønsker å gjøre dobbelt så sikker, er det aldri en periode når et signal ikke mottas av NTP serveren dual time server kan bli brukt. Disse plukker opp både radio og GPS-overføringer, og NTP-demonen ombord beregner den mest nøyaktige tiden fra begge deler.

Sårbarheten til GPS

Onsdag, mars xnumxrd, xnumx

En økning i GPS-angrepene har forårsaket noe bekymring blant det vitenskapelige samfunn. GPS, mens et svært nøyaktig og pålitelig system for overføring av tid og posisjonsinformasjon, er avhengig av svært svake signaler som hindres av forstyrrelser fra jorden.

Både utilsiktet forstyrrelse som fra piratstasjoner eller forsettlig bevisst «jamming» av kriminelle er fortsatt sjeldne, men som teknologi som kan hemme GPS-signaler blir mer tilgjengelig, forventes situasjonen å bli verre.

Og mens effektene av signalfeil i GPS-systemet kan ha åpenbare resultater for folk som bruker den til navigasjon (som slutter på feil sted eller går seg vill), kan det få mer alvorlige og dype konsekvenser for teknologiene som er avhengige av GPS for tiden signaler.

Som så mange teknologier stoler nå på GPS timing signaler fra telefonnett, internett, bank- og trafikklys og til og med våre strømnettet kan signalfeil uansett hvor kort det er, føre til alvorlige problemer.

Hovedproblemet med GPS-signalet er at det er svært svakt og som det kommer fra rombundne satellitter, kan lite gjøres for å øke signalet, slik at en hvilken som helst lignende frekvens som sendes i et lokalt område, lett kan drukne ut GPS.

Imidlertid er GPS ikke den eneste nøyaktige og sikre metoden for å motta tiden fra en atomurkilde. Mange nasjonale fysikklaboratorier fra hele verden sender atomklokkesignaler via radiobølger (vanligvis lang bølge). I USA sendes disse signalene av NIST (National Institute for Standards and Time (kjent som WWVB) mens det i Storbritannia er MSF-signalet kringkastet av NPL (Nasjonalt fysisk laboratorium).

Dobbeltservere som kan motta begge signalene er tilgjengelige og er et sikrere bud for ethvert høyteknologisk selskap som ikke har råd til å risikere å miste et tidssignal.

Kvantum atomklokker Fremtidens presisjon

Fredag ​​februar 26th, 2010

Atomuret er ikke en ny oppfinnelse. Utviklet i 1950, har den tradisjonelle cesiumbaserte atomuret gitt oss nøyaktig tid i et halvt århundre.

De cesium atomur har blitt grunnlaget for vår tid - bokstavelig talt. De Internasjonalt system av enheter (SI) definerer et sekund som et visst antall oscillasjoner av atomet cesium og atomurene styrer mange av teknologiene som vi lever med daglig bruk: Internett, satellittnavigasjon, flytrafik og trafikklys for å nevne Noen.

Imidlertid er den siste utviklingen i optiske kvanteklover som bruker enkeltatomer av metaller som aluminium eller strontium tusenvis av ganger mer nøyaktige enn tradisjonelle atomklokker. For å sette dette i perspektiv, kan den beste cesium atomuren som brukes av institutter som NIST (National Institute for Standards and Time) eller NPL (National Physical Laboratory) for å styre verdens globale tidsskala UTC (Koordinert universell tid), er nøyaktig innen et sekund hvert 100 millioner år. Imidlertid er disse nye kvanteoptiske klokkene nøyaktige til et sekund hvert 3.4 milliard år - nesten så lenge jorden er gammel.

For de fleste er deres eneste møte med en atomur mottatt sin tidssignal er a nettverkstidsserver or NTP-enhet (Network Time Protocol) med det formål å synkronisere enheter og nettverk, og disse atomur-signalene genereres ved hjelp av cesiumklokker.

Og til verdens forskere kan enige om et enkelt atom for å erstatte cesium og en enkelt klokke design for å holde UTC, vil ingen av oss kunne dra nytte av denne utrolige nøyaktigheten.

Nettverkstidsprotokoll og datatidsynkronisering

Tirsdag, februar 23rd, 2010

Spør noen nettverksadministrator eller IT-ingeniør og spør dem hvor viktig nettverkssynkronisering er og du vil normalt få det samme svaret - veldig.

Tid brukes i nesten alle aspekter ved databehandling for logging når hendelser har skjedd. Faktisk timestamps er den eneste referansen en datamaskin kan bruke til å holde spor av oppgaver det har gjort og de som den har ennå å gjøre.

Når nettverkene er usynkroniserte, kan resultatet være en ekte hodepine for alle som har problemer med å feilsøke dem. Data kan ofte gå tapt, programmer ikke begynner, feillogging er nesten umulig, for ikke å nevne sikkerhetsproblemene som kan oppstå hvis det ikke er synkronisert nettverkstid.

NTP (Network Time Protocol) er det ledende tidssynkroniseringsprogrammet som har eksistert siden 1980s. Den har blitt stadig utviklet og brukes av nesten alle datanettverk som krever nøyaktig tid.

De fleste operativsystemer har en versjon av NTP allerede installert og bruker den til å synkronisere en enkelt datamaskin er relativt rett frem ved å bruke alternativene i klokkeinnstillingene eller oppgavelinjen.

Ved å bruke den innebygde NTP-applikasjonen eller demonen på en datamaskin, vil det imidlertid føre til at enheten bruker en kilde til internettid som en referansehenvisning. Dette er alt bra og bra for single-desk-toppmaskiner, men på et nettverk er det nødvendig med en sikrere løsning.

Det er viktig på alle datanettverk at det ikke er sårbarheter i brannmuren som kan føre til angrep fra ondsinnede brukere. Å holde en port åpen for å kommunisere med en Internett-tidkilde er en metode som en angriper kan bruke til å skrive inn et nettverk.

Heldigvis finnes det alternativer til å bruke internett som en tidskilde. Atom klokke tid signaler kan mottas ved hjelp av langbølge-radio eller GPS-overføringer.

dedikert Ntp tid enheter er tilgjengelige som gjør prosessen med tidssynkronisering ekstremt lett som NTP-servere mottar tiden (eksternt til brannmuren) og kan deretter distribuere til alle maskiner på et nettverk - dette gjøres sikkert og nøyaktig med de fleste nettverk synkronisert til en NTP-server som arbeider til i løpet av noen millisekunder av hverandre.

Atomic Clocks Nå fordoblet i presisjon

Fredag ​​februar 19th, 2010

Som med fremskrittet av datateknologi som synes å øke eksponentielt i evnen hvert år, ser atomklokker også ut til å øke dramatisk i sin nøyaktighet år etter år.

Nå, de pionerene av atomur teknologi, USAs National Institute of Standards Time (NIST), har annonsert at de har klart å produsere en atomur med nøyaktighet to ganger det av klokker som har gått før.

Klokken er basert i et enkelt aluminiumatom, og NIST hevder at det kan forbli nøyaktig uten å miste et sekund i over 3.7 milliarder år (omtrent samme tid som livet har eksistert jorden).

Den forrige mest nøyaktige klokken ble utarbeidet av den tyske Physikalisch-Technische Bundesanstalt (PTB) og var en optisk klokke basert på et strontiumatom og var nøyaktig til et sekund på over en milliard år. Denne nye atomklokken fra NIST er også en optisk klokke, men er basert på aluminiumatomer, som ifølge NISTs forskning med denne klokken er langt mer nøyaktig.

Optiske klokker bruker lasere til å holde atomer fortsatt og avvike fra de tradisjonelle atomklokkene som brukes av datanettverk NTP-servere (Network Time Protocol) og annen teknologi som er basert på fontener. Ikke bare bruker disse tradisjonelle fontenen klokker cesium som deres tidsbevisende atom, men i stedet for lasere bruker de superkjølte væsker og støvsuger for å kontrollere atomer.

Takket være arbeidet av NIST, PTB og Storbritannias NPL (Nasjonalt fysisk laboratorium) atomklokker fortsetter å ekspansjonelt, men disse nye optiske atomklokker basert på atomer som aluminium, kvikksølv og strontium er langt fra å bli brukt som grunnlag for UTC (Koordinert universell tid).

UTC styres av en konstellasjon av cesium fontenen klokker som samtidig nøyaktig til et sekund i 100,000 år er langt mindre presis enn disse optiske klokker og er basert på teknologi over femti år gammel. Og dessverre til verdens vitenskaps-fellesskap kan bli enige om et atom- og urdesign som skal brukes internasjonalt, vil disse presise atomklokkene bare forbli en leksaks i det vitenskapelige samfunn.

Atomic Clock Scientific Precision

Fredag ​​februar 5th, 2010

Presisjon blir stadig viktigere i moderne teknologi og ikke mer enn nøyaktighet i tid. Fra internett til satellittnavigasjon er nøyaktig og nøyaktig synkronisering avgjørende i moderne alder.

Faktisk vil mange av teknologiene som vi tar for gitt i dagens verden, ikke være mulig hvis det ikke var for de mest nøyaktige maskinene oppfunnet - atomur.

Atomic klokker er bare tidevann enheter som andre klokker eller klokker. Men hva står dem fra hverandre er nøyaktigheten de kan oppnå. Som et grovt eksempel vil din standardmekaniske klokke, som et byklokketårn, skyve så mye som en sekund om dagen. Elektroniske klokker som digitale klokker eller klokkeradioer er mer nøyaktige. Disse typer klokke drev et sekund om en uke.

Men når du sammenligner nøyaktigheten til en atomur der et sekund ikke vil gå tapt eller oppnådd i 100,000 år eller mer, er nøyaktigheten av disse enhetene uforlignelig.

Atomklokker kan oppnå denne nøyaktigheten av oscillatorene de bruker. Nesten alle typer klokker har en oscillator. Generelt er en oscillator bare en krets som regelmessig flipper.

Mekaniske klokker bruker pendler og fjærer for å gi regelmessig svingning mens elektroniske klokker har krystall (vanligvis kvarts) at når en elektrisk strøm går gjennom, gir en nøyaktig rytme.

Atomklokker bruker oscillasjon av atomer under forskjellige energitilstander. Ofte brukes cesium 133 (og noen ganger rubidium), da den hyperfine overgangssvingningen er over 9 milliarder ganger i sekundet (9,192,631,770), og dette endres aldri. Faktisk er det Internasjonalt system av enheter (SI) ser nå offisielt et øyeblikk som 9,192,631,770-sykluser av stråling fra cesiumatomet.

Atomklokker gir grunnlaget for verdens globale tidsskala - UTC (Koordinert universell tid). Og datanettverk over hele verden holder seg synkronisert ved bruk av tidssignaler som sendes ut av atomur og hentes på NTP-servere tid (Network Time Server).

Nettverkstidsprotokoll og nettverkstidssynkronisering

Onsdag, februar 3rd, 2010

Synkronisering av datanettverk er noe som mange administratorer tar for gitt. Dedikerte nettverkstidsservere kan motta en tidskilde og distribuere den mellom et nettverk, nøyaktig, sikkert og nøyaktig.

Imidlertid nøyaktig tidssynkronisering er bare mulig takk tid protokollen NTP - Nettverkstidsprotokoll.

NTP ble utviklet da internett var fortsatt i sin barndom og Professor David Mills og hans team fra Delaware University forsøkte å synkronisere tiden på et nettverk av noen få maskiner. De utviklet den aller tidligste overføringen av NTP som fortsatt har blitt utviklet til denne dagen, nesten tretti år etter den første starten.

NTP var ikke da, og er ikke nå den eneste tidssynkroniseringsprogramvaren, det finnes andre programmer og protokoller som gjør en lignende oppgave, men NTP er den mest brukte (langt med over 98% av tidssynkroniseringsprogrammer som bruker den). Den er også pakket med de fleste moderne operativsystemer med en versjon av NTP (vanligvis SNTP - en forenklet versjon) installert på det nyeste Windows 7-operativsystemet.

NTP har spilt en viktig rolle i å skape internett vi kjenner og elsker i dag. Mange onlineapplikasjoner og oppgaver vil ikke være mulige uten nøyaktig tidssynkronisering og NTP.

Online handel, internett auksjoner, bank og feilsøking av nettverk, stole alle på nøyaktig tidssynkronisering. Selv å sende en e-post krever tidssynkronisering med e-postserver - ellers ville datamaskiner ikke kunne håndtere e-postmeldinger som kommer fra usynkroniserte maskiner som de kan ankomme før de ble sendt.

NTP er en gratis programvare protokoll og er tilgjengelig online fra NTP.org Men de fleste datanettverk som krever sikker og presis tid, bruker det meste dedikerte NTP servere som opererer eksternt til nettverket og brannmuren, får tid fra atomur-signaler som sikrer millisekundens nøyaktighet med verdens globale tidsskala UTC (Koordinert universell tid).

Bruke GPS som kilde til presis tid

Torsdag, januar 28th, 2010

Global Positioning System (GPS) er et stadig mer populært verktøy som brukes over hele verden som en kilde til veiing og navigering. Det er imidlertid mye mer til GPS-nettverket enn bare satellittnavigasjon, da transmisjonene som sendes av GPS-satellittene, også kan brukes som en svært nøyaktig tidskilde.

GPS-satellitter er faktisk bare bølgende klokker som hver inneholder atomklokker som genererer et tidssignal. Det er tidssignalet som sendes av GPS-satellittene som satellittnavigasjonsmottakere i biler og fly bruker til å trene avstand og posisjon.

Posisjonering er bare mulig fordi tidssignalene dine er så nøyaktige. Kjøretøyet satte navene bruker for eksempel signalene fra fire omløpende satellitter og triangulerer informasjonen til å utarbeide stillingen. Men hvis det bare er ett sekunds unøyaktighet med et av tidssignaler, kan posisjonsinformasjonen være tusenvis av miles ute - noe som viser seg ubrukelig.

Det er testament til nøyaktigheten av atomurene som brukes til å generere GPS-signaler som for tiden en GPS-mottaker kan trene sin posisjon på jorden til innen fem meter.

Fordi GPS-satellitter er så nøyaktige, er de en ideell kilde til tid til synkroniser et datanettverk til. Strengt sett er GPS-tid forskjellig fra den internasjonale tidsskalaen UTC (koordinert universell tid), ettersom UTC har gitt ekstra sprang sekunder til det for å sikre likhet med jordens rotasjon, noe som betyr at det er nøyaktig 18 sekunder foran GPS, men det er lett å konvertere av NTP til tidssynkronisering protokoll (Network Time Protocol).

GPS tidsservere motta GPS-tidssignalet via en GPS-antenne som må plasseres på taket for å motta siktlinjen. Når GPS-signalet er mottatt, NTP GPS-tid server vil distribuere signalet til alle enheter på NTP-nettverket og korrigerer drift på enkelte maskiner.

GPS tidsservere er dedikert til brukervennlige enheter og kan sikre millisekundens nøyaktighet til UTC uten noen av sikkerhetsrisikoen ved bruk av en Internett-tidskilde.