Holder tid med resten av verden

A tidsserver er et vanlig kontorverktøy, men hva er det for?

Vi er alle vant til å ha en annen tid fra resten av verden. Når Amerika våkner, går Honk Kong til sengs, hvorfor verden er delt inn i tidssoner. Selv i samme tidssone kan det fortsatt være forskjeller. På fastlands-Europa er for eksempel de fleste land en time foran Storbritannia på grunn av Storbritannias sesongklokkebytte.

Men når det gjelder global kommunikasjon, kan det ha problemer med å ha forskjellige tidspunkter over hele verden, spesielt hvis du må gjennomføre tidsfølsomme transaksjoner som å kjøpe eller selge aksjer.

For dette formål var det klart ved den tidlige 1970 at det var nødvendig med en global tidsskala. Det ble introdusert på 1 januar 1972 og ble kalt UTC - Koordinert universell tid. UTC holdes av atomur, men er basert på Greenwich Meantime (GMT - ofte kalt UT1) som er en tidsskala basert på jordens rotasjon. Dessverre varierer jorden i sin tur, slik at UTC står for dette ved å legge til et sekund en eller to ganger i året (Leap Second).

Mens det er kontroversielt for mange, er det nødvendig med sprang sekunder av astronomer og andre institusjoner for å hindre dagen i å drive noe ellers ville det være umulig å utarbeide stjernens posisjon i natthimmelen.

UTC er nå brukt over hele verden. Ikke bare er det den offisielle globale tidsskalaen, men brukes av hundretusenvis av datanettverk over hele verden.

Datanettverk bruker a nettverkstidsserver for å synkronisere alle enheter på et nettverk til UTC. De fleste tidsservere bruker protokollen NTP (Network Time Protocol) for å distribuere tid.

NTP-tidsservere mottar tiden fra atomur ved enten langbølge-radiotransmisjoner fra nasjonale fysikklaboratorier eller fra GPS-nettverket (Global Positioning System). GPS satellitter alle har en ombord atomur som stråler tiden tilbake til jorden. Selv om dette tidssignalet ikke er strengt talt UTC (det er kjent som GPS-tid) på grunn av overføringens nøyaktighet, blir det lett omgjort til UTC ved hjelp av en GPS NTP server.

Hvordan et atomur fungerer

Atomsklokker brukes til tusenvis av applikasjoner over hele verden. Fra å kontrollere satellitter for å til og med synkronisere et datanettverk ved hjelp av a NTP serveratomklokker har forandret måten vi styrer og styrer tiden på.

Med hensyn til nøyaktighet er en atomur uovertruffen. Digitale kvarts klokker kan holde nøyaktig tid i en uke, ikke å miste mer enn et sekund, men en atomur kan holde tid i millioner av år uten å drive så mye.

Atomklokkene arbeide med prinsippet om kvantesprang, en gren av kvantemekanikk som sier at et elektron; en negativt ladet partikkel, vil bane en kjerne av et atom (senteret) i en bestemt renhet eller et nivå. Når den absorberer eller frigjør nok energi, i form av elektromagnetisk stråling, vil elektronen hoppe til et annet plan - kvantespringet.

Ved å måle frekvensen av den elektromagnetiske strålingen som svarer til overgangen mellom de to nivåene, kan tidsforsinkelsen registreres. Cesiumatomer (cesium 133) er foretrukket for timing, da de har 9,192,631,770-sykluser av stråling i hvert sekund. Fordi energienivåene i cesium-atomet (kvantestandardene) alltid er like og er så høyt, er cesium-atomuret utrolig nøyaktig.

Den vanligste form for atomur som brukes i verden i dag er cesiumfontenen. I denne typen klokke projiseres en sky av atomer opp i et mikrobølgekammer og får lov til å falle ned under tyngdekraften. Laserbjelker reduserer disse atomene og overgangen mellom atomets energinivå måles.

Den neste generasjonen av atomklokker blir utviklet, bruk ionfeller i stedet for en fontene. Ioner er positivt ladede atomer som kan bli fanget av et magnetfelt. Andre elementer som strontium blir brukt i disse neste generasjonsklokker, og det anslås at den potensielle nøyaktigheten av et strontiumionfeltklokkeslett kan være 1000 ganger det for de nåværende atomklokkene.

Atomsklokker benyttes av alle slags teknologier; satellittkommunikasjon, Global Positioning System og til og med Internett-handel er avhengig av atomur. De fleste datamaskiner synkroniseres indirekte med en atomur ved å bruke en NTP server. Disse enhetene mottar tiden fra en atomur og distribuerer rundt sine nettverk og sikrer nøyaktig tid på alle enheter.

Synkronisere til et atomur

Atomklokkene er høydepunktet for tidsbesparende enheter. Moderne atomklokker kan holde tid til en slik nøyaktighet at de i 100,000,000 år (100 millioner) ikke mister de enda et sekund i tide. På grunn av dette høye nøyaktighetsnivået er atomurene grunnlaget for verdens tidsskala.

For å tillate global kommunikasjon og tidsfølsomme transaksjoner som kjøp av stabler og deler en global tidsskala, basert på tiden som ble forklart av atomur, ble utviklet i 1972. Denne tidsskalaen, koordinert universell tid (UTC) styres og kontrolleres av International Bureau of Weights and Measures (BIPM) som bruker en konstellasjon av over 230 atomklokker fra 65 laboratorier over hele verden for å sikre høy grad av nøyaktighet.

Atomklokker er basert på atomets grunnleggende egenskaper, kjent som kvantemekanikk. Kvantemekanikk antyder at et elektron (negativt ladet partikkel) som kretser et atoms kjernen, kan eksistere i forskjellige nivåer eller baneplaner, avhengig av om de absorberer eller frigjør den riktige mengden energi. Når en elektron har absorbert eller gitt ut nok energi i kan "hoppe" til et annet nivå, er dette kjent som et kvantespring.

Frekvensen mellom disse to energitilstandene er det som brukes til å holde tid. De fleste atomklokker er basert på cesiumatomet som har 9,192,631,770-perioder av stråling som svarer til overgangen mellom de to nivåene. På grunn av nøyaktigheten av cesiumklokker, vurderer BIPM nå et sekund som skal defineres som 9,192,631,770-sykluser av cesiumatomet.

Atomsklokker brukes i tusenvis av forskjellige applikasjoner hvor presis timing er viktig. Satellittkommunikasjon, flytrafikkontroll, internetthandel og legeforeninger krever at atomklokker holder tid. Atomklokker kan også brukes som en metode for synkronisere datanettverk.

Et datanettverk som bruker en Ntp tid kan enten bruke en radiotransmisjon eller signaler som sendes av GPS-satellitter (Global Positioning System) som en tidskilde. NTP-programmet (eller demonen) vil da sørge for at alle enhetene på det nettverket synkroniseres med tiden som forklart av atomuret.

Ved å bruke en NTP server Synkronisert til en atomur kan et datanett kjøre identisk koordinert universell tid som andre nettverk, slik at tidsfølsomme transaksjoner kan gjennomføres fra hele verden.

Hvor finner du en offentlig NTP-server

NTP-servere brukes av datanettverk som en tidsreferanse for synkronisering. en NTP server er virkelig en kommunikasjonsenhet som mottar tiden fra en atomur og distribuerer den. NTP-servere som mottar en direkte atomur tid er kjent som stratum 1 NTP servere.

En stratum 0-enhet er en atomur selv. Disse er svært dyre og delikate maskinstykker og finnes bare i storskala fysikklaboratorier. Dessverre er det mange regler for hvem som kan få tilgang til en stratum 1-server på grunn av båndbreddehensyn. De fleste stratum 1 NTP-servere er satt opp av universiteter eller andre ideelle organisasjoner, og må derfor begrense hvem som får tilgang til dem.

Heldigvis kan stratum 2-tidsservere tilby anstendig nok nøyaktighet som en tidkilde, og en hvilken som helst enhet som mottar et tidssignal, kan selv brukes som en tidsreferanse (en mottakstid fra en stratum 2-enhet er en stratum 3-server. Enheter som mottar tid fra en stratum 3-server er lag 4-enheter og så videre).

Ntp.org, er det offisielle hjemmet til NTP-bassengprosjektet og langt det beste stedet å gå for å finne en offentlig NTP-server. Det er to lister over offentlige servere tilgjengelig i bassenget; primære servere, som viser stratum 1 servere (de fleste er lukket tilgang) og sekundære som er alle stratum 2 servere.

Når du bruker en offentlig NTP-server, er det viktig å overholde tilgangsregler, da det ikke kan føre til at serveren blir tilstoppet med trafikk, og hvis problemene vedvarer, slettes muligens, ettersom de fleste offentlige NTP-servere er satt opp som generøse handlinger.

Det er noen viktige poeng å huske når du bruker en tidkilde fra over Internett. For det første kan Internett-tidkilder ikke godkjennes. Autentisering er et innebygd sikkerhetsmåte som brukes av NTP, men utilgjengelig over nettet. For det andre, å bruke en Internett-tidkilde krever en åpen port i brannmuren. Et hull i en brannmur kan brukes av ondsinnede brukere og kan føre til at et system er sårbart for angrep.

For de som krever en sikker timing kilde eller når nøyaktighet er svært viktig, en dedikert NTP server som mottar et tidssignal fra enten langbølge-radiotransmisjoner eller husleinettverket.

MSF Outage 11 Desember Ingen MSF-signal

NPL Time & Frequency Services


Merknad om avbrudd MSF 60 kHz Tid og Frekvenssignal

MSF 60 kHz tids- og frekvenssignalet som sendes fra Anthorn Radio Station vil bli stengt i løpet av perioden:

11 desember 2008
fra 10: 00 UTC til 14: 00 UTC

Avbrudd for overføring er nødvendig for å tillate planlagt vedlikeholdsarbeid utføres i sikkerhet.

Hvis du vil laste ned en PDF av denne kunngjøringen, klikker du her.

Hvis du trenger ytterligere informasjon, vennligst kontakt time@npl.co.uk

Eller alternativt, se vår hjemmeside: www.npl.co.uk/time

Arrangere et NTP Server Stratum Tree

NTP (Network Time Protocol) er den mest brukte tidssynkroniseringsprotokollen på Internett. Årsaken til suksessen er at den er både fleksibel og svært nøyaktig (så vel som fri). NTP er også ordnet inn i en hierarkisk struktur slik at tusenvis av maskiner kan motta et timingsignal fra bare en NTP server.

Selv om tusen maskiner på et nettverk alle forsøkte å motta et tidssignal fra NTP-serveren samtidig, ville nettverket bli flaskehalset og NTP-serveren ville bli gjort ubrukelig.

Av denne grunn eksisterer NTP-stratum-treet. Øverst på treet er NTP-tidsserveren som er en stratum 1-enhet (en stratum 0-enhet er atomuret som serveren mottar sin tid fra). Under NTP server, mottar flere servere eller datamaskiner timinginformasjon fra stratum 1-enheten. Disse pålitelige enhetene blir stratum 2-servere, som igjen distribuerer timinginformasjonen til et annet lag med datamaskiner eller servere. Disse blir deretter lag 3-enheter som igjen kan distribuere tidsinformasjon til lavere lag (stratum 4, lag 5 etc).

I alt kan NTP støtte opp til ni lagnivåer, selv om jo lengre unna den opprinnelige stratum 1-enheten er de mindre nøyaktige synkroniseringen. For et eksempel på hvordan et NTP-hierarki er satt opp, vennligst se dette stratum tre

WWVB-tidssignalet

De WWVB-tidssignal er en dedikert radiosending som gir en nøyaktig og pålitelig kilde til USAs sivile tid, basert på den globale tidsskalaen UTC (Coordinated Universal Time), blir WWVB-signalet sendt og vedlikeholdt av USAs NIST-laboratorium (National Institute for Standards and Tid).

WWVB-tidssignalet kan utnyttes av alle som krever nøyaktig timinginformasjon, selv om hovedbruken er som kilde til UTC-tid for administratorer som synkroniserer et datanettverk med en radioklokke. Radio klokker er virkelig et annet begrep for a nettverkstidsserver som bruker en radiotransmisjon som en tidskilde.

De fleste radiobaserte nettverkstidsservere bruker NTP (Network Time Protocol) for å distribuere tidsinformasjonen i hele nettverket.

WWVB-signalet sendes fra Fort Collins, Colorado. Det er tilgjengelig 24 timer om dagen over det meste av USA og Canada, selv om signalet er sårbart for forstyrrelser og lokal topografi. Brukere av WWVB-tjenesten mottar overveiende et "bølgebølge" -signal. Det er imidlertid også en gjenværende "himmelbølge" som reflekteres av ionosfæren og er mye sterkere om natten; Dette kan resultere i et totalt mottatt signal som er enten sterkere eller svakere.

WWVB-signalet bæres med en frekvens på 60 kHz (til innenfor 2-deler i 1012) og styres av en cesium-atomur basert på NIST

Signalets feltstyrke overstiger 100 μV / m (mikrovolt en meter) i en avstand på 1000 km fra Colorado - som dekker mye av USA.

WWVB-signalet er i form av en enkel binær kode som inneholder informasjon om tid og dato WWVB-tid og datokode inneholder følgende opplysninger: år, måned, dag i måned, ukedag, time, minutt, sommertid nært forestående).

Holde tid med Network Time Protocol

NTP (Network Time Protocol) er den mest fleksible, nøyaktige og populære metoden for å sende tid over Internett. Det er kanskje at internettets eldste protokoll har eksistert i en eller annen form siden midten av 1980.

Hovedformålet med NTP er å sikre at alle enheter på et nettverk synkroniseres til samme tid og for å kompensere for noen forsinkelser i nettverkstiden. Over LAN eller WAN NTP klarer å opprettholde en nøyaktighet på noen millisekunder (Over internett, overføring av tid hvis langt mindre nøyaktig på grunn av nettverkstrafikk og avstand).

NTP er langt den mest brukte tidssynkroniseringsprotokollen (et sted i regionen 95% av alle tidsservere bruker NTP) og det skylder mye av suksess for sine kontinuerlige oppdateringer og fleksibilitet. NTP vil kjøre på UNIX, LINUX og Windows-baserte operativsystemer (det er også gratis, en annen mulig grunn for sin store suksess).

NTP bruker en enkeltkilde som den distribuerer blant alle enheter på et nettverk; det kontrollerer også hver enhet for drift (å vinne eller miste tid) og justerer for hver. Det er også hierarkisk fordi bokstavelig talt tusenvis av maskiner kan styres med bare en NTP server da hver maskin i seg selv kan brukes av nabobutikker som tidsserver.

NTP er også svært sikker (når du bruker en ekstern tidsreferanse, ikke når du bruker Internett til en tidskilde) med en autentiseringsprotokoll som kan fastslå nøyaktig hvor en tidkilde kommer fra.

For at et nettverk skal være effektivt, bruker de fleste NTP-tidsservere en atomur som grunnlag for sin tidssynkronisering. En internasjonal tidsskala basert på tiden som ble fortalt av atomklokker, er utviklet for dette formålet. UTC (koordinert universell tid).

Det er egentlig to metoder for å motta et sikkert UTC atomur tidssignal som skal benyttes av NTP. Den første er tids- og frekvensoverføringen som flere nasjonale fysikklaboratorier sender på lang bølge rundt om i verden; den andre (og uten tvil den mest lett tilgjengelige) er ved å bruke timinginformasjonen i GPS-satellittransmisjonene. Disse kan hentes overalt på kloden og gi sikker, sikker og svært nøyaktig timinginformasjon.

Viktigheten av å forhindre NTP-tidsservermisbruk

Ntp tid (Network Time Protocol) misbruk er ganske ofte utilsiktet og heldigvis takket være NTP-bassenget er mindre hyppig enn det var selv om hendelser fortsatt skjer.

NTP server misbruk er en handling som bryter med adgangsregler for en NTP-tidsserver eller en handling som skader det på noen måte. Offentlige NTP-servere er de serverne som kan nås fra hele Internett av enheter og rutere for å bruke som en tidskilde for å synkronisere et nettverk til. De fleste offentlige NTP-tidsservere er non-profit og satt opp som generøsitet, hovedsakelig ved universitetets eller andre tekniske sentre.

Av denne grunn må tilgangsregler settes opp da store mengder trafikk kan generere gigantiske båndbredderegninger og kan føre til at NTP-tidsserveren slås av permanent. Tilgangsregler brukes til å hindre for mye trafikk fra å få tilgang til stratum 1-servere, etter at konvensjonen stratum 1-servere kun skal åpnes av stratum 2-servere som igjen kan sende timinginformasjonen nedover linjen.

Imidlertid har de verste tilfeller av NTP-server misbruk vært hvor tusenvis av enheter har sendt forespørsler om tid, der i den hierarkiske naturen til NTP bare er en nødvendig.

Mens de fleste handlinger av NTP misbruk er forsettlige noen av de verste misbruk av NTP-servere tid har blitt begått (om enn utilsiktet) av store selskaper. Det første store firmaet som ble oppdaget å ha vært skyldig i NTP-misbruk, var Netgear, som i 2003 utgav fire rutere som alle var hardkodede for å bruke University of Wisconsin NTP-server, nådde den resulterende DDS (Distributed Denial of Service) nesten 150 megabits en sekund.

Selv nå, fem år på og til tross for utgivelsen av flere patcher for å fikse problemet og Universitetet blir kompensert av Netgear, fortsetter problemet fremdeles som noen mennesker aldri har patched rutene sine.

Lignende hendelser har blitt begått av SMC og D-Link. D-Link spesielt forårsaket kontroverser som når saken ble trukket til deres oppmerksomhet bestemte de seg for å bringe advokatene inn. Bare etter at det ble oppdaget at de brøt nesten 50 NTP-servere, forsøkte de å løse problemet de relent).

Den enkleste måten å unngå slike problemer er å bruke en dedikert ekstern stratum 1-tidsserver. Disse enhetene er relativt billige, enkle å installere og langt mer nøyaktige og sikre enn NTP-servere på nettet. Disse enhetene mottar tiden fra atomur enten fra GPS-nettverket (Global Positioning System).

Betydningen av tidssynkronisering i den moderne verden

Tid har alltid spilt en viktig rolle i sivilisasjonen. Forståelse og overvåkningstid har vært en av menneskets pre-yrker siden forhistorien, og evnen til å holde oversikt over tid var like viktig for de gamle som det er for oss.

Våre forfedre trengte å vite når den beste tiden var å plante avlinger eller når de skulle samles for religiøse feiringer og å vite at tiden betyr at det er det samme som alle andres.

Tidssynkronisering synkronisering~~POS=HEADCOMP er nøkkelen til nøyaktig tidsbesparelse, ettersom det å arrangere en hendelse på en bestemt tid bare er verdt hvis alle kjører samtidig. I den moderne verden, som virksomheten har flyttet fra et papirbasert system til en elektronisk, er betydningen av tidssynkronisering og søket etter stadig bedre nøyaktighet enda viktigere.

Datanettverk kommuniserer nå med hverandre fra hele verden som utfører milliarder dollar verdt transaksjoner hvert sekund, millisekundens nøyaktighet er nå en del av forretningssuksess.

Datanettverk kan bestå av hundrevis og tusenvis av datamaskiner, servere og rutere, og mens de alle har en intern klokke, med mindre de er synkronisert perfekt sammen, kan et mylder av potensielle problemer oppstå.

Sikkerhetsbrudd, datatap, hyppige krasjer og sammenbrudd, svindel og kundens troverdighet er alle mulige farer ved dårlig datatidsynkronisering. Datamaskiner stole på tid som det eneste referansepunktet mellom hendelser og mange applikasjoner og prosesser er tidsavhengig.

Selv uoverensstemmelser mellom noen millisekunder mellom enheter kan forårsake problemer spesielt i verden av global finans hvor millioner blir oppnådd eller tapt på et sekund. Av denne grunn styres de fleste datanettverk av a tidsserver. Disse enhetene mottar et tidssignal fra en atomur. Dette signalet distribueres deretter til alle enheter på nettverket, slik at alle maskiner har samme tid.

De fleste synkroniseringsenheter styres av dataprogrammet NTP (Network Time Protocol). Denne programvaren kontrollerer regelmessig hver enhetens klokke for drift (sakte eller akselererende fra ønsket tid) og korrigerer det, slik at enhetene aldri svinger fra den synkroniserte tiden.